Skip to main content

Advertisement

Log in

Using local infrasound arrays to detect plunging snow avalanches along the Milford Road, New Zealand (Aotearoa)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Snow avalanches pose a hazard in alpine environments. There is a need to improve monitoring capabilities in order to reliably detect and locate avalanche activity, which will help to validate avalanche hazard assessments. Recent work has demonstrated the utility of infrasound as it can provide continuous monitoring and broad geographic coverage. Here, we present the first use of infrasound to monitor snow avalanche activity in a maritime climate along the Milford Road in Fiordland, New Zealand (Aotearoa). Size 4 (or larger) plunging avalanches frequently occur along the Milford Road, which travels through a glacial-carved valley with steep cliffs (slope angles can exceed 50\(^\circ\)) that are over 1000 m tall. We deployed two infrasound arrays on the eastern side of the Homer Tunnel and recorded triggered and natural avalanches during our month-long field campaign. We use array processing to identify avalanche signals, calculate back-azimuths, and triangulate source locations. Source locations are well constrained for avalanches that are in-network but are worse for avalanches that occur out-of-network, likely due to topographic scattering of acoustic waves from the steep valley walls. The infrasound amplitudes are substantially larger than previously recorded at other locations with a maximum peak-to-peak amplitude of 37 Pa detected for a large triggered avalanche, which reflects the unique dynamics of the avalanches along the Milford Road. This study demonstrates the utility of infrasound for snow avalanche monitoring in maritime climates and showcases an efficient processing workflow that could be easily operationalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allstadt KE, Matoza RS, Lockhart AB, Moran SC, Caplan-Auerbach J, Haney MM, Thelen WA, Malone SD (2018) Seismic and acoustic signantures of surficial mass movements at volcanoes. J Volcanol Geoth Res 364:76–107. https://doi.org/10.1016/j.jvolgeores.2018.09.007

    Article  Google Scholar 

  • Ballesteros-Cánovas JA, Trappmann D, Madrigal-González J, Eckert N, Stoffel M (2018) Climate warming enhances snow avalanche risk in the Western Himalayas. Proc Natl Acad Sci USA 115(13):3410–3415

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22(9):1021–1024

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63(1–2):1–14

    Article  Google Scholar 

  • Fee D, Izbekov P, Kim K, Yokoo A, Lopez T, Prata F, Kazahaya R, Nakamichi H, Iguchi M (2017) Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: evaluation at Sakurajima Volcano, Japan. Earth Planet Sci Lett 480:42–52

    Article  Google Scholar 

  • Fitzharris BB, Owens IF (1980) Avalanche atlas of the Milford Road; an assessment of the hazard to traffic. Technical report, New Zealand Mountain Safety Council Avalanche Committee

  • Goddard PH (2014) Diverse Challenges: Avalanche Forecasting For The Department Of Conservation In Fiordland. New Zealand, In: International snow science workshop, Banff

  • Havens S, Marshall HP, Covington C, Nicholson B, Conway H (2012) Real time slope stability modeling of direct action avalanches. In: International snow science workshop. Anchorage, Alaska, pp 866–871

  • Havens S, Marshall HP, Johnson JB, Nicholson B (2014) Calculating the velocity of a fast-moving snow avalanche using an infrasound array. Geophys Res Lett 41(17):6191–6198

    Article  Google Scholar 

  • Hendrikx J (2005) An examiniation of the snow and avalanche hazard on the Milford Road, Fiordland, New Zealand. PhD thesis, University of Canterbury

  • Iezzi AM, Fee D, Kim K, Jolly AD, Matoza RS (2019) Three-dimensional acoustic multipole waveform inversion at Yasur Volcano, Vanuatu. J Geophys Res Solid Earth 124(8):8679–8703. https://doi.org/10.1029/2018JB017073

    Article  Google Scholar 

  • Issler D (2003) Experimental information on the dynamics of dry-snow avalanches. Lect Notes Appl Comput Mech 11:109–160

    Article  Google Scholar 

  • Johnson JB, Anderson JF, Marshall HP, Havens S, Watson LM (2021) Snow avalanche detection and source constraints made using a networked array of infrasound sensors. J Geophys Res Earth Surface

  • Johnson JB, Anderson JF, Marshall HP, Havens S, Watson LM (2021) Snow avalanche detection and source constraints made using a networked array of infrasound sensors. J Geophys Res Earth Surf. https://doi.org/10.1029/2020JF005741

    Article  Google Scholar 

  • Johnson JB, Palma JL (2015) Lahar infrasound associated with Villarrica’s March 3, 2015 eruption. Geophys Res Lett 42:6324–6331

    Article  Google Scholar 

  • Kim K, Lees JM (2011) Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions. Geophys Res Lett 38(L06804)

  • Kim K, Lees JM (2014) Local Volcano infrasound and source localization investigated by 3D simulation. Seismol Res Lett 85(6):1177–1186

    Article  Google Scholar 

  • Kogelnig A (2012) Development of acoustic monitoring for alpine mass movements. PhD thesis, University of Natural Resources and Life Sciences Vienna (BOKU), Institute of Mountain Risk Engineering

  • Kogelnig A, Suriñach E, Vilajosana I, Hübl J, Sovilla B, Hiller M, Dufour F (2011) On the complementariness of infrasound and seismic sensors for monitoring snow avalanches. Hazards Earth Syst. Sci 11:2355–2370

    Article  Google Scholar 

  • Koschuch R, Jocham P, Hübl J (2015) One year use of high-frequency radar technology in alpine mass movement monitoring: Principles and performance for torrential activities. In: Engineering geology for society and territory - volume 3: River Basins, Reservoir Sedimentation and Water Resources, pp 69–73. Springer International Publishing

  • Lacanna G, Ripepe M (2013) Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. J Volcanol Geoth Res 250:9–18

    Article  Google Scholar 

  • Lacroix P, Grasso JR, Roulle J, Giraud G, Goetz D, Morin S, Helmstetter A (2012) Monitoring of snow avalanches using a seismic array: location, speed estimation, and relationships to meteorological variables. J Geophys Res Earth Surf 117(1):1–15

    Google Scholar 

  • Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the Last 50 Years in Switzerland. Nat Hazards 27(3):201–230

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Ulivieri G, Kogelnig A (2015) Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system. Nat Hazard 15(11):2545–2555

    Article  Google Scholar 

  • Marchetti E, Van Herwijnen A, Christen M, Silengo MC, Barfucci G (2020) Seismo-acoustic energy partitioning of a powder snow avalanche. Earth Surf. Dynam 8:399–411

    Article  Google Scholar 

  • Marchetti E, Walter F, Barfucci G, Genco R, Wenner M, Ripepe M, McArdell B, Price C (2019) Infrasound array analysis of debris flow activity and implication for early warning. J Geophys Res Earth Surf 124(2):567–587

    Article  Google Scholar 

  • Marcillo O, Johnson JB, Hart D (2012) Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter. J Atmos Oceanic Tech 29(9):1275–1284

    Article  Google Scholar 

  • Mayer S, van Herwijnen A, Ulivieri G, Schweizer J (2020) Evaluating the performance of an operational infrasound avalanche detection system at three locations in the Swiss Alps during two winter seasons. Cold Reg Sci Technol 173:102962

    Article  Google Scholar 

  • MBIE (2019) The Milford opportunities project. Technical report, Ministry of Business, Innovation and Employment

  • McClung D, Schaerer P A PA (2006) The avalanche handbook. Mountaineers Books

  • McLauchlan HJ (1995) An assessment of the velocities, impact pressure and other related effects of the avalanches on the Milford Road, Fiordland, New Zealand. PhD thesis, University of Canterbury, Christchurch, New Zealand

  • Meier L, Jacquemart M, Blattmann B, Arnold B (2016) Real-Time Avalanche Detection With Long-Range, Wide-Angle Radars For Road Safety In Zermatt. Switzerland, In: International snow science workshop, Breckenridge, Colorado

  • Miller A, Sirguey P, Morris S, Bartlet P, Cullen N, Buhler Y (2021) Avalanche modelling on the Milford Road. New Zealand Avalanche Dispatch

  • Moner I, Orgué S, Gavaldà J, Bacardit M (2013) How big is big: results of the avalanche size classification survey. In: International snow science workshop, Chamonix Mont-Blanc

  • Mori J, Filson J, Cranswick E, Borcherdt R, Amirbekian R, Aharonian V, Hachverdian L (1994) Measurements of P and S wave fronts from the dense three-dimensional array at Garni, Armenia. Bull Seismol Soc Am 84(4):1089–1096

    Google Scholar 

  • MRA (2020) Milford road news December 2020. Technical report, Milford Road Alliance

  • Owens IF, Fitzharris BB (1985) Avalanche atlas of the Milford Track and assessment of the hazard to walkers. Technical report, New Zealand Mountain Safety Council Avalanche Commitee

  • Owens IF, Fitzharris BB (1989) Assessing avalanche-risk levels on walking tracks in Fiordland, New Zealand. Ann Glaciol 13:231–236

    Article  Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Voight B (2010) Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat. Geophys Res Lett 37(19):1–5

    Google Scholar 

  • Schaerer P (1989) The avalanche-hazard index. Ann Glaciol 13:241–247

    Article  Google Scholar 

  • Schimmel A, Hubl J, Koschuch R, Reiweger I (2017) Automatic detection of avalanches : evaluation of three different approaches. Nat Hazards 87:83–102

    Article  Google Scholar 

  • Scott ED, Hayward CT, Kubichek RF, Hamann JC, Pierre JW, Comey B, Mendenhall T (2007) Single and multiple sensor identification of avalanche-generated infrasound. Cold Reg Sci Technol 47–2 SPEC. ISS(1):159–170

    Article  Google Scholar 

  • Suriñach E, Furdada G, Sabot F, Biesca B, Vilaplana JM (2001) On the characterization of seismic signals generated by snow avalanches for monitoring purposes. Ann Glaciol 32:268–274

    Article  Google Scholar 

  • Thüring T, Schoch M, van Herwijnen A, Schweizer J (2015) Robust snow avalanche detection using supervised machine learning with infrasonic sensor arrays. Cold Reg Sci Technol 111:60–66

    Article  Google Scholar 

  • Toney L, Fee D, Allstadt KE, Haney MM, Matoza RS (2021) Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano (Alaska) ice-rock avalanches from seismoacoustic data. Earth Surf Dyn 9(2):271–293

    Article  Google Scholar 

  • Ulivieri G, Marchetti E, Ripepe M, Chiambretti I, De Rosa G, Segor V (2011) Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array. Cold Reg Sci Technol 69(2–3):177–183

    Article  Google Scholar 

  • Ulivieri G, Marchetti E, Ripepe M, Chiambretti I, Segor V (2012) Infrasonic monitoring of snow avalanches in the Alps. In: International snow science workshop, Anchorage, Alaska

  • van Herwijnen A, Heck M, Schweizer J (2016) Forecasting snow avalanches using avalanche activity data obtained through seismic monitoring. Cold Reg Sci Technol 132:68–80

    Article  Google Scholar 

  • van Herwijnen A, Schweizer J (2011a) Monitoring avalanche activity using a seismic sensor. Cold Reg Sci Technol 69(2–3):165–176

    Article  Google Scholar 

  • van Herwijnen A, Schweizer J (2011b) Seismic sensor array for monitoring an avalanche start zone: design, deployment and preliminary results. J Glaciol 57(202):267–276

    Article  Google Scholar 

  • Vilajosana I, Khazaradze G, Suriñach E, Lied E, Kristensen K (2007a) Snow avalanche speed determination using seismic methods. Cold Reg Sci Technol 49(1):2–10

    Article  Google Scholar 

  • Vilajosana I, Suriñach E, Khazaradze G, Gauer P (2007b) Snow avalanche energy estimation from seismic signal analysis. Cold Reg Sci Technol 50(1–3):72–85

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers who provided useful and constructive reviews. Collection of the infrasound data was supported by the Milford Road Alliance, which is a partnership between the New Zealand Transport Agency (Waka Kotahi) and Downer New Zealand. Meteorological data and photos are provided by the Milford Road Alliance. L. M. Watson was supported by NSF EAR 1949219 and J. B. Johnson was supported by TARP Grant 3411019021. Infrasound data is available at the Boise State University Infrasound Data Repository (doi:10.18122/infrasound_data.7.boisestate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leighton M. Watson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, L.M., Carpenter, B., Thompson, K. et al. Using local infrasound arrays to detect plunging snow avalanches along the Milford Road, New Zealand (Aotearoa). Nat Hazards 111, 949–972 (2022). https://doi.org/10.1007/s11069-021-05086-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-05086-w

Keywords

Navigation